dosage amounts at which any subsequent doses of the drug are taken by the patient. Each dose may be of the same or

A "patient" means a human or non-human animal in need of medical treatment. Medical treatment can include treat- 5 ment of an existing condition, such as a disease or disorder, prophylactic or preventative treatment, or diagnostic treatment. In preferred embodiments the patient is human.

"Providing" means giving, administering, selling, distributing, transferring (for profit or not), manufacturing, com- 10 pounding, or dispensing.

"Risk" means the probability or chance of adverse reaction, injury, or other undesirable outcome arising from a medical treatment. An "acceptable risk" means a measure of the risk of harm, injury, or disease arising from a medical 15 treatment that will be tolerated by an individual or group. Whether a risk is "acceptable" will depend upon the advantages that the individual or group perceives to be obtainable in return for taking the risk, whether they accept whatever scientific and other advice is offered about the magnitude of the 20 risk, and numerous other factors, both political and social. An "acceptable risk" of an adverse reaction means that an individual or a group in society is willing to take or be subjected to the risk that the adverse reaction might occur since the adverse reaction is one whose probability of occurrence is 25 small, or whose consequences are so slight, or the benefits (perceived or real) of the active agent are so great. An "unacceptable risk" of an adverse reaction means that an individual or a group in society is unwilling to take or be subjected to the risk that the adverse reaction might occur upon weighing the 30 probability of occurrence of the adverse reaction, the consequences of the adverse reaction, and the benefits (perceived or real) of the active agent. "At risk" means in a state or condition marked by a high level of risk or susceptibility.

Pharmacokinetic parameters referred to herein describe the 35 in vivo characteristics of drug (or a metabolite or a surrogate marker for the drug) over time. These include plasma concentration (C), as well as C_{max} , C_n , C_{24} , T_{max} , and AUC. " C_{max} " is the measured plasma concentration of the active agent at the point of maximum, or peak, concentration. 40 prophylaxis of gout flares with colchicine, comprising " C_{min} " is the measured plasma concentration of the active agent at the point of minimum concentration. " C_n " is the measured plasma concentration of the active agent at about n hours after administration. "C₂₄" is the measured plasma concentration of the active agent at about 24 hours after 45 administration. The term " T_{max} " refers to the time from drug administration until C_{max} is reached. "AUC" is the area under the curve of a graph of the measured plasma concentration of an active agent vs. time, measured from one time point to another time point. For example AUC_{0-t} is the area under the 50 curve of plasma concentration versus time from time 0 to time t, where time 0 is the time of initial administration of the drug. Time t can be the last time point with measurable plasma concentration for an individual formulation. The $AUC_{0-\infty}$, AUC_{∞} or $\mathrm{AUC}_{0\text{-}inf}$ is the calculated area under the curve of 55 plasma concentration versus time from time 0 to time infinity. In steady-state studies, $AUC_{0-\tau}$ is the area under the curve of plasma concentration over the dosing interval (i.e., from time 0 to time τ (tau), where tau is the length of the dosing interval. Other pharmacokinetic parameters are the parameter K_e or

 K_{el} , the terminal elimination rate constant calculated from a semi-log plot of the plasma concentration versus time curve; $t_{1/2}$ the terminal elimination half-life, calculated as 0.693/K_{e/}. CL/F denotes the apparent total body clearance after administration, calculated as Total Dose/Total AUC_∞; and V_{area}/F denotes the apparent total volume of distribution after administration, calculated as Total Dose/(Total $AUC_{\infty} \times K_{el}$).

"Side effect" means a secondary effect resulting from taking a drug. The secondary effect can be a negative (unfavorable) effect (i.e., an adverse side effect) or a positive (favorable) effect.

The most frequently reported adverse side effects to colchicine therapy are gastrointestinal, specifically abdominal pain with cramps, diarrhea, nausea, and vomiting. Less frequently or rarely reported adverse side effects associated with colchicine therapy include anorexia, agranulocytosis, allergic dermatitis, allergic reactions, alopecia, angioedema, aplastic anemia, bone marrow depression, myopathy, neuropathy, skin rash, thrombocytopenic disorder, and urticaria.

Whether a patient experiences an adverse side effect can be determined by obtaining information from the patient regarding onset of certain symptoms which may be indicative of the adverse side effect, results of diagnostic tests indicative of the adverse side effect, and the like.

Embodiments are described herein, including the best modes known to the inventors. Variations of such embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The skilled artisan is expected to employ such variations as appropriate, and the disclosed methods are expected to be practiced otherwise than as specifically described herein. Accordingly, all modifications and equivalents of the subject matter recited in the claims appended hereto are included to the extent permitted by applicable law. Moreover, any combination of the abovedescribed elements in all possible variations thereof is encompassed unless otherwise indicated herein or otherwise clearly contradicted by context.

What is claimed is:

- 1. A method of treating a patient in need of treatment for the
 - orally administering to the patient in need of treatment for the prophylaxis of gout flares, an adjusted daily dosage amount of colchicine to the patient who is receiving concomitant administration of 200 mg per day of ritonavir,
 - wherein the adjusted daily dosage amount of colchicine is 25% to 50% of 0.6 mg twice per day or 0.6 mg once per day, which is an amount of colchicine suitable for the patient if the patient were not receiving concomitant ritonavir.
- 2. The method of claim 1, further comprising carefully monitoring the individual for potential toxicity.
- 3. The method of claim 1, wherein the adjusted daily dosage amount of colchicine is 25% of an intended daily dosage amount of colchicine.
- 4. The method of claim 1, wherein the adjusted daily dosage amount of colchicine is 50% of an intended daily dosage amount of colchicine.